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Some classical types of waves on shallow water are investigated using the Boussinesq equation in polar coordinates. In these 
coordinate, normal perturbation theory methods lead to overdetermined systems of linear algebraic equations for unknown 
coefficients. It is shown that, the special cases examined, these equations are compatible, which makes it possible to construct 
solutions of Boussinesq equation with the same accuracy as that with which the equation was obtained. The velocity potential 
specified on the bottom and the function specifying the free surface of the water are expanded in a Fourier series in terms of 
time. The coefficients of their first two harmonics are expressed explicitly as polynomials in Bessel functions with coefficients in 
the form of elementary functions of the polar coordinates. © 2004 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Lamb [1, Sections 191-195] examines (in polar coordinates r, 0) at least three special cases of long, 
linear, three-dimensional waves: (1) axisymmetrical waves propagating over a horizontal bottom and 
caused by a periodic energy source [see below, formula (1.2)]; (2) the simplest non-axisymmetrical wave 
motion [formula (1.3)] in a circular tank; (3) rough model of 12-hour rising tides in a basin at the Earth's 
pole, bounded by a small circle of latitude [formula (1.4)]. 

Below, the solutions obtained for the Boussinesq equation are found with the same accuracy as that 
with which the equation was derived and can be regarded as non-linear corrections to the classical linear 
solutions mentioned. 

On changing of the Boussinesq equation there is a reduction in the dimension of the problem, since 
the velocity potential is expanded in a power series in terms of the vertical coordinate. This expansion 
was used by Lagrange [2] and then developed by Bossinesq [3], and the modern form has been obtained 
by Friedrichs [4] (see the review [5]). Different versions of the Boussinesq equation are related mainly 
to the choice of the principal variables (see [6, 7]). Adopting Mei's notation [8], we use the velocity 
potential specified on the bottom F(x, y, t), and the free surface elevation q(x, y, t), as the principal 
variables. Note that the function rl can be expressed in terms of F. 

There are two small parameters related to the Boussinesq equation: e - the ratio of the amplitude 
to the depth (a measure of the non-linearity), and g - the ratio of the depth to the wavelength (the 
variance). As in the classical Boussinesq equation, we retain terms O(e) and O(g 2) [but do not assume 
the equality O(~) = O(g2)]. 

The velocity potential specified on the bottom is expanded in a Fourier series in terms of the time 

F(r, O, t) = U(r, O) + St(r, 0)sino)t + Cl(r, 0)coso)t + S2(r, 0)sin20)t + 

+ C2(r, 0)cos2o)t + .., + sm(r, 0)sinmo)t + C"(r, 0)cosmo)t + ... 
(1.1) 

The main result of this paper consists of explicit expressions for the functions 

U(r, 0), Sl(r, 0), Cl(r,O), S2(r,O), CZ(r,O) (1.2) 

up to orders ~ and g2 [see formulae (4.1), (4.2), (5.1), (5.2), (6.1) and (6.2)]. These functions are 
homogeneous polynomials in the Bessel function Z0(~0r ) and Zl(o~r) and in trigonometric functions of 
the angular variable 0, and their coefficients are polynomials in r -1 and r. Similar formulae are also given 
for the function rl. These expressions give periodic solutions of the Boussinesq equation with the same 
accuracy as that with which the equation was obtained. Therefore, the result can be interpreted as a 
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periodic solution of the equations of surface waves [see below, Eqs (2.2-2.5)], found with accuracy O(e) 
and O(g2). 

The three classical linear solutions [1] have the form 

1) F(r, O, t) = Jo(or)s inot  + Yo(or)cosot  (1.3) 

2) F(r, 0, t) = Jl(or)cosOsinot  (1.4) 

3) F(r, O, t) = J2(o3r)cos2Osinmt (1.5) 

An attempt to find the functions (1.2) with accuracy O(e) and O(B 2) necessitates solving a Bessel- 
type second-order inhomogeneous differential equation 

Z"(r) + ! Z ( r )  + (A + B ) Z =  qooJo(or)Yo(mr) + qolJo(or)Yl(Or) + 

+ qloJl (or)  Yo(°r) + qH JJ (c°r) Y1 (mr) 

where qij represents polynomials in r and r -1. 
We will seek a solution in the form 

(1.6) 

Z(r) = QooJo(or) Yo(or) + QolJo(or)Yl(or)  + QloJl(Or)Yo(mr) + 

+ Q~zJl(or)Y1(or) (1.7) 

where Qij represents polynomials in r and r q with unknown coefficients. These coefficients are calculated 
as solutions of an overdetermined system of linear algebraic equations (as in earlier papers [9, 10], where 
the same approach was used to describe, up to terms of order ~2, E~2 and p4, long periodic waves over 
an inclined bottom). The general solution Eq. (1.6) is the sum of a particular solution, written out below, 
and the general solution of the corresponding homogeneous equation, which is a linear combination 
of Bessel functions. 

In the cases examined, the compatibility of these overdetermined systems is a question of luck, and 
there is no obvious reason for the systems corresponding to higher harmonics also to be compatible. 
However, it can be assumed that the given expressions will be the first terms of the still unknown 
three-dimensional exact solution of Eqs (2.2)-(2.5). Exact three-dimensional solutions are unknown 
at present, but below an "intermediate" solution is proposed (a solution of order ~ and B2) that, it is 
hoped, describes more accurately the behaviour of long periodic waves compared with Lamb's linear 
solution. 

2. BASIC EQUATIONS 

We will recall briefly the derivation of the Boussinesq equation in a form convenient for subsequent 
presentation and introduce notation following, principally, Mei [8]. The dimensionless quantities are 
introduced in the following way 

1 1 

x' y£ z' 5.'~ 1"1' ' , h' - ~ g ~ n °  t ' ,  = h° 
x =  l, o, y =  1o, Z = ho, t = lo 11 ao'7' cp = ,,, 2.'2' ~p, h = _ho (2.1) 

aotog no 

The primes here correspond to physical variables: a~ is the characteristic amplitude of the wave, h~ is 
the depth, l~ is the wavelength, g is the acceleration due to gravity, x' andy' are the horizontal coordinates, 
z' is the vertical coordinate at t' is the time. The scaled equation and the boundary conditions for 
irrotational wave motion have the form 

~pxx+¢pyy+g-2¢pzz = O, - l  <z<er l (x , y , t )  (2.2) 

rl t + eCpxr]x + g~pylqy- B-2q0z = 0, Z = erl(x, y, t) (2.3) 
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1 2 z 
q)t + 11 + ~e(q)x + q~y) + eg-zcP~ = 0, z = e]](x, y, t) (2.4) 

¢Pz = 0, z = -1 (2.5) 

where e and g are measures of the non-linearity and variance, defined by the formulae 

e = aolh o, g = holl o (2.6) 

The potential cp(x, y, z, t) is expanded in powers of the vertical coordinate 

cp(x, y, z, t) = Z (z + 1)mFrn(X, y, t) (2.7) 
r a = 0  

Substituting expression (2.7) into Eq. (2.2) and equation each power ofz  + 1 to zero, we obtain [the 
symbol V is used to denote the horizontal gradient (3/Ox, 3/3y)] 

g2VZFm 
Fm+z = ( m + 2 ) ( m + l ) '  m = 0 ,1 ,2  . . . .  (2.8) 

The boundary conditions on the bottom (2.5) give 

Y 1 = 0 (2.9) 

Thus, q~ can be expressed in terms of Fo(x, y, t) 

¢p = F - ~ g 2 ( z  + 1)272F + ~.bt4(z + 1)474F + 0 ( .  6) (2.10) 

the (zero subscript in the function Fo(x, y, t) has been omitted here and below). 
Expression (2.10) satisfies Eq. (2.2) and boundary condition (2.5). Substituting expression (2.10) into 

conditions (2.3) and (2.4) we obtain the Boussinesq equations for the two functions: the potential on 
the bottom F(x, y, t) and the free surface elevation ]](x, y, t) 

1 2 ~ 2 ~ 2 ~  ]]t+eV]] * V F + ( 1  + £ ] ] ) V E F - ~  v v P = 0 (2.11) 

1 2 2  1 2 
1]+F t - ~  V F t+~e(VF)  = 0 (2.12) 

These equations are equivalent to the equations given by Mei [8], Ch. 11, Eqs (1.16) and (1.17). 
In order to express the function specifying the free surface elevation r I(x, y, t) in terms of the functions 

F(x, y, t) and its derivatives, we use the expansion 

1"1 = 110 + ]]2" 2 + ]]4" 4 + O ( ~  6) 

The substituting this expression into Eq. (2.12) we obtain the formulae 

1 ~ F~)e ,  ]]2 = 1 no = - F t -  ~(- x + ~(Fxx, + Fyyt) (2.13) 

Subsequent substitution of expressions (2.13) into Eq. (2.11) yields a unique equation for the function 
F 

1 gFxxyy), + + Fx~ + Vyy + (~Fxxtt 1 1 1 1 2 Fit + ~Fyytt- gFxxxx - ~Fyyyy - 

+ ( -  2FxFxt- 2FyFy t - FxxF t - FyyFt)e = 0 (2.14) 

or in polar coordinates (r, 0) 
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- Ftt + I Foo + ! Fr + Frr + ( - 2  FoFot- I FtFoo- ! FtFr-  2FrFrt- FtFrr)E + 

2r rtt l. Frrtt - t_ 3r 4 ~ r  2 0 0 t t - - ~ r  4 0 0 0 0  6r 6r 

1 1 1 7 2 
37FrroO-~-rFrrr-~Frrrr]~ = 0 (2.15) 

3. THE P E R I O D I C  P R O B L E M  

We will assume that the solution of Eq. (2.15) is periodic with respect to time and can be expanded in 
a Fourier series in a certain region, excluding the neighbourhood of the axis of symmetry, i.e. 

1 2 • (Cloo(r, O) + O)g2)COSO~t+ F(r, O, t) = u(r, O)8 + (S~o(r, O) + So2(r, O)lx )smmt+ C~(r,  
2 2 + (Slo(r, 0)e) sin2tot + (Cw(r, 0)e)cos2cot + . . .  (3.1) 

The form of the coefficients of sin mint and cos mint is determined by recurrent calculations using the 
solution of Eq. (2.15). 

In the zeroth order we have the following linear problems for S~0 (r, 0) and C~0 (r, 0) 

2 I 1 S 1 + 1 .t  .1 
o Soo + -7 oooo r~OOr + ~OOrr = 0 (3 .2)  

r 

2 l  1 1 1 ~ 1 
o COO + -fiCooeo + rCoo~ + Coorr = 0 (3.3) 

r 

Their solutions, expressed in polar coordinates, can be represented in the form of the series 

O~oJo( tOr ) + ~3o Yo( cOr) + (ohJ l (o r )  + ~lYl(cor))cos0 + 

+...  + ( °~nJn( ° r )  + ~nyn( oar) )cosn 0 +. . .  (3.4) 

We will concentrate on three cases, corresponding to formulae (1.3)-(1.5). 
Case 1 

1 1 
Soo = O~oJo(mr) + ~oYo(cOr), Coo = ToJ0(or) + 8oY0(or ) (3.5) 

Case 2 

Case 3 

1 1 
S0o = ~lJl(O~r)cos0, C0o = 0 (3.6) 

1 1 
SOO = o~2J2(20r)cos20, Coo = 0 (3.7) 

The first solution was used to describe axisymmetrical wave motion with a periodic source at the centre 
of the system of polar coordinates [1, Sections 191-195]. The second solution was used to describe the 
simplest (but "most interesting") case of regular non-axisymmetrical wave motion in a circular tank. 
The third solution yields a crude presentation of 12-hour rising tides for a basin at the Earth's pole, 
bounded by a small circle of latitude. The aim of our subsequent examination is to provide the next- 
order correction to these classical solutions. 

We will denote by S = S(r) and C = C(r) the two solutions of Bessel's equation 

rZrr + Z r + o32rZ = 0 (3.8) 

and their derivatives will be denoted by S" and C". The functions S(r), C(r), S'(r) C'(r) can be represented 
in terms of Bessel functions as follows: 

S(r) = allJo(cOr)+a12Yo(or), S'(r) = o ( -anJ l (Oar ) -a l zY l (mr) )  

C(r) = a21Jo(or ) + a22Yo(or ), C(r)  = o ( - a z i J l ( o r  ) -  az2Yl(mr)) 
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4. CASE 1: A X I S Y M M E T R I C A L  WAVES W I T H  A P E R I O D I C  S O U R C E  

In the axisymmetrical case, formulae (1.1) acquires the form 

1 2 
F(r,  t) = u(r)¢  + ( S ~ ( r )  + S~02(r)~tZ)sinoJt + ( C ~ ( r )  + C02(r)~t )coso~t + 

2 
+ S~o(r)esin2cot + Cm(r)Ecos2o~t + ....  S ~ ( r )  = S, C ~  = C 

(4.1) 

Calculations yield explicit formulae for the coefficients 

u = 0  
2 2 

6 6 So2 = S', Co2 = 

2 2 ( S  2 C2)+3_~r(SS, CC,), S01 = 
2 

C1o = o~CS + r(SC" + S'C) 

(4.2) 

Substituting these expressions into formulae (3.12), we obtain 

r l ( r ,O , t )  o 2 2 . ~ I 2 = Llo(r)e  + ( P ~ ( r )  + Po2(r)~t )smmt + (Qoo(r) + a02(r)g )coso~t + 
2 2 

+ (Pm(r)e)s in2o~t  + (Qm(r)e )cos2oJ t  (4.3) 

Here  

0 1^,2 1 2 
/ ~ o  = - ~ - ~ c 

3 
1 1 2 0 )3 /"  ~ 1 

Poo = o~C, P02 = C+--~--C", Qoo = -mS, 

2 3~2r.  __, 
PIO = 2032CS+ - - - ~ ( U 5  + C'S) 

2 

Q o= 

3 3 
Q12 = 0,1 ~ OI r~,  

- T ~ - - g - ~  
(4.4) 

Special cases 
Assuming 

alz = -to -1, azl = m -l, art = a22 = 0 (4.5) 

we have S(r) = -oYlYo(o3r) and C(r) = oYlJo(o3r). Then, in the principal approximation, we obtain 

q(r,  O, t) = Jo(COr)sino)t + Yo(o)r)coscot 

Consequently, when r ~ + ~  

rl(r, 0, t )=  ~ r ( C O S ( O J r - 4 ) s i n o ~ t +  s in (o ) r -4 )coso) t )  = 2 ~ r S i n ( o ~ r - 4 + o ~ t  ) 

Thus, case (4.5) corresponds to a progressive wave while the case 

a l l  = 1, a22 -- a12 --" a21 --- 0 (4.6) 

corresponds to a standing (axisymmetrical) wave. 
An axisymmetrical progressive wave generated by a point source in shown in Fig. 1 for o~ --- 0.6, 

e = 0.1, g = 0.3 and t = n/co. The graph illustrates the dependence of the free surface elevation 11 on 
the radial coordinate r. The continuous curve is the non-linear solution (of order e and g2), and the 
dashed curve is the linear solution. On the wave corresponding to the new solution, the front slope is 
steeper, while the rear slope is shallower. 
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5. CASE 2: N O N - A X I S Y M M E T R I C A L  WAVES ( S T A N D I N G  WAVES IN 
A C I R C U L A R  TANK)  

We will assume that the solution is periodic with respect to time and can be expanded in a Fourier 
series in the region obtained by eliminating the neighbourhood of the axis of symmetry: 

1 1 O)g2) coso)t 2 F(r, O, t) = u(r, O)e + (Coo(r, O) + C02(r, + (Slo(r, O)e)sin20~t + .... 
(5.1) 

C~o = C"cos0 

Calculations yield 

u = 0  

C02 = - ( r ( o 2 C  + C ) c o s O  

S, 2 = ( ~ C 2 +  3c°3 ~,-. (~-~  8C"2)cos20 --~-rt~t. - 4 C 2 ]  + rCC' + 

(5.z) 

The function C = C(r) is again the solution of Eq. (3.8). 
Substituting these expressions into formulae (2.13), we obtain 

rl(r, 0, t) Ll0(r,° O)e + (P~( r ,  O) + 1 2 . 2 = Po2(r, 0)11 ) slntot + (Q10(r, 0 )~)cos2ot  (5.3) 

Here  

4 2 
0 _ 4 C 2 c 0 s 2 0 _  tO 2 1 C,2 LIO = ~rrCCCos O - 4 r  ~ 

(O5 3 
l t ---~-rCcos0 + 3 C ' c o s 0  P0o = oC'cos0,  Po2 = 

Q~o = ( 0 4 C 2  - -  C O S 2 0  - -  - -  tgZCC c°s20 + --~-rcos tJ) + 

\ 4r  2 

(5.4) 

The non-linear corrections proposed considerably alter the shape of the level lines. In particular, the 
surface is never plane, unlike the classical linear solution. 

The solution obtained for o = 1.0, ~ = 0.2 and g = 0.4 is illustrated in Fig. 2, where the contours 
(level lines rl = 0.1, 0.2, 0.3, 0.4) of non-axisymmetrical waves (Case 2) for different values of t are 
presented. The continuous curves are the solutions of order ~ and g2, and the dashed curves are the 
classical Lamb solution. 
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6. CASE 3: N O N - A X I S Y M M E T R I C A L  WAVES 
( 1 2 - H O U R  R I S I N G  TI DES)  

Case 3 differs from Case 2 in that 

The following formulae are obtained 

u = 0  
4 

Co2 = - rCcos20 

/ S~o = 04C 2+ + CC'4" ----~4" C 2 

+ [ - 2 C 2 + ( - 2 ° Z r '  + 384------r)cc' + I-  2 + ~ ) C 2 1  cos40 

Substituting these expressions into formulae (2.13), we obtain 

Ti(r, O, t) o = Lxo(r, O)E+ (P~(r,  O) + Pol2(r, O)g2) sincot + Q1o(r,20)ecos2ot 

Here 

4 4 2°)e 2°---2 + CC 
o o~ C2 + 3 r 

Ll° = 2 r 

+ '2 2rZJ + - ~ +  r +~r  CC 

" 81 - -~ - -~ + - CZ + 
r r T 

+ - ~ + r'5 + --~r -- C 2 cos40 

(6.1) 

(6.2) 

(6.3) 
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eoo  -- o,  cos2o ,  = c c o s 2 o  

( 4 4 ) (  
Q~o = " m 01 2co 5 C 2 + - 20)2 201Z 2013 + CC" 

2 2r z r 3 r r 2r 

( 2 2 401 m2 3013 8 1 C 2 + _ _  2 2 + - + +---s-~ 
t" r r 

CO C 2 -t- - 3 r r 2r 
+ + 015 20)2 20)2 20)3 ~ CC" + 

2r 2 r 

+ -- 2 Z + - ~ + - -  CV2 
r r r r 2 

The solutions obtained for co = 1.0, e = 0.2 and g = 0.4 is illustrated in Fig. 3, where the contours 
(level lines ~ = 0.1, 0.2, 0.3, 0.4) of non-axisymmetrical waves (Case 3) for different values of t are 
presented. The continuous curves are the solution of order ~ and g2, and the dashed curves are the 
classical linear Lamb solution. 

7. C O N C L U S I O N  

There are at least two methods for reducing the three-dimensional problem of surface waves to a two- 
dimensional problem: 

(1) assume that the motion is not dependent on one of the horizontal coordinates; 
(2) assume that the depth is small compared with the wavelength; this enables one to eliminate the 

vertical coordinate from the number of independent variables in approximate shallow water theories 
(Lagrangian approximations). Both these methods eliminate from consideration one of the spatial 
coordinates. 
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The second method, leading to classical Boussinesq-type equations, has been used above. For these 
equations, three types of periodic solution have been obtained. They can be regarded as solutions of 
the classical equations of surface waves (2.2)-(2.5) up to terms of order e and ~t 2. Intermediate equations 
are given for illustrating the method of derivation, but solutions corresponding to Cases 1 to 3 can be 
checked by substituting into system (2.2)-(2.5) (using expression (2.10) for the potential). Linear versions 
of these problems were the subject of the classical investigation in Lamb's book [1, Sections 191-195]. 

We assume that these expressions are only the first terms of a certain series giving an accurate three- 
dimensional solution of the equations of surface waves (2.2)-(2.5). The number of known accurate 
solutions is fairly small; in particular, no three-dimensional solutions are known. 

The results were obtained by the method of undetermined coefficients as solutions of overdetermined 
systems of algebraic linear equations (the cause of their compatibility remains unclear). These results 
can be interpreted as the integrability of certain cubic expressions of Bessel functions. 
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